Dr. R. W. Bernard

(Walter Siegmeister)

Science Discovers the Physiological Value of Continence


device width goes here

Dr Raymond W Bernard, 1943 (Walter Siegmeister)

Chemistry of Semen and the Brain; Neurasthenia

Part 3 of 3

top of page


A. Chemistry of the Semen

Seminal fluid is composed of the secretory products of the testis, epididymis, seminal vesicles, prostate gland and Cowper's gland. [Bulbourethral gland] It is a viscid, albuminous fluid, alkaline in reaction and opalescent in color. The average amount given off at each ejaculation, which varies with individuals and with the same individual at different times, is about 5 grams. In each ejaculation about 226 million spermatozoa are believed to exist.

Human semen contains 90 per cent water and 10 per cent solids which when incinerated yield 1 per cent ash. The quantitative analysis of the ash reveals a large amount of calcium and phosphorus. According to Lode, [no pun intended] the amount of calcium given off at one ejaculation is about 0.01 gm., which exceeds that in an equal quantity of lime water. As we have mentioned, the semen also contains a substance named spermine, [Wikipedia] which is a powerful metabolic stimulant and has been so recommended by Poehl in 1898. Spermine has also been found to be present in the gray matter of the brain. This may explain its nerve-invigorating properties, which resemble those of lecithin, also present both in the semen and the brain.

The physiological chemist, Simon, describes the semen, as a thick, whitish, glutious mass containing cholesterin, which he calls "brain fats", and lecithin, a phosphorus-containing fatty constituent of brain substances. If the semen is allowed to stand until it evaporates, Simon notes that it deposits a film of prisms composed largely of phosphate of lime. On heating it gives off ammonia, leaving a carbonaceous mass containing sodium chloride, calcium phosphate and magnesia. According to Lode, the ash of the semen contains 20% calcium and 30% phosphoric acid.

Chakraberty [no info] describes the composition of the semen as follows: "The protein substance consists of nucleoproteins, traces of mucin, albumin and a proteose, and is relatively richer in nuclein than any other part of the body. The mineral bodies are calcium, phosphorus, sodium chloride and potassium." It is thus clear that emissions of semen can withdraw considerable minerals from the body, and so predispose to mineral deficiency, in addition to the withdrawal of lecithin, cholesterin and nucleoproteins.

It is to its prostatic components that the semen owes its milky turbidness and peculiar odor. This milky turbidness is due to the lecithin globules (fatty-nitrogen-phosphorus compounds) of the prostate gland, the decomposition of which leads to the odor. The prostatic secretion also contains sodium, potassium, calcium, magnesium, chlorides, phosphorus, sulfur, nucleoproteins, albumin, etc. In a paper, "The Constitution of the Normal Prostatic Secretion" (Am. Jour. Med. Sciences, Aug., 1903), [1a] [Heinrich] Stern points out the presence in the prostatic secretion of "abundant amounts" of phosphorus-containing lecithin, an essential constituent of nervous tissue. The loss of this deprives the nerve cells of nourishment; and this explains the relation between prostatitis and neurasthenia. No two organs show greater similarity in their lecithin, cholesterin and phosphorus contents as the semen and the brain.

[1a. Page 277. babel.hathitrust.org ]

The analyses of Slowtzoff, Meischer and Lode [1b] show the semen to contain:

  • PROTEINS (Albumin, nucleoproteins, globulins, 2.65% mucin, nuclein, proteose, protamin, hemialalbumose, alkali albuminate)
  • LIPOIDS (phosphorized fats, including 0.412% lecithin)
  • CHOLESTERIN 0.208%
  • MINERALS (phosphorus, sodium, potassium, 0.910% calcium, magnesium, iron, sulfur, chlorine)

[1b. Their work is referenced in an abstract here: journals.physiology.org]

The high concentration of lipoids (lecithin, etc.) in the semen, rivaled only by that in the brain, is striking. [Charles Homer] Wheelon [2] writes: "The beneficial results following the administration of testicular preparations have been considered due to the presence of nucleo-albumin rich in phosphorus, resembling lecithin or glycerophosphates ([C. E. de Medicis] Sajous).

[2. Partial bio at NIH: ncbi.nlm.nih.gov/pubmed/16887919 ]

Microscopic studies have definitely shown the presence of fatty particles in the interstitial cells and lymphatics of the testis, the fat content varying with the sexual cycles. Certain investigators, especially Duesberg, [3] contend that these microscopic bodies represent the internal secretion of the testes." The interstitial cells of the testis, like the brain cells, are characterized by richness in lipoids.

[3. c. 1918. See www.jstor.org/stable/1536276 ]

top of page


B. Chemistry of Spermatazoa

No investigator has more carefully studied the chemistry of any cell than [Friedrich] Miescher [4] in his studies of the spermatozoon. He found its tail to be very rich in phosphorized fats (phospholipins), particularly lecithin, and also cholesterin, while the head consists almost entirely of nucleoproteins and an organic substance containing iron, besides abundant amounts of phosphorized fats.

[4. Pioneer in discovery of DNA (1844-1895) en.wikipedia.org/wiki/Friedrich_Miescher ]

According to Miescher, the tail of the spermatazoon has the following composition:

Protein 41.90% Phosphorized fats (lecithin) 31.83% Cholesterin 26.27%

The spermatazoon as a whole contains:

Protein 83.76% Lecithin 7.47% Other fats 4.53% Cholesterin 2.53%

Chakraberty describes the tail of the spermatazoon as being composed of proteins, lecithin, cholesterin and lipoids, and states that "its composition resembles the non-medulated nerves or the axis-cylinder." According to Meischer, the head of the human spermatazoon consists entirely (96%) of a substance very rich in nitrogen and protein, belonging to the group of compounds known as nucleo-proteins. The other four percent of the substance of the head of the spermatazoon consists of lecithin, cholesterin, fat, calcium phosphate, calcium carbonate and an organic substance containing 0.12% iron.

Miescher found a higher concentration of lecithin in the blood of fish at the time of spermatogenesis than normally, which indicates that a considerable amount of lecithin is withdrawn from the circulation for the formation of spermatozoa. He also observed that in the salmon, the sexual organs develop at the expense of the muscular system and that the proteins deposited in the testes for the formation of spermatozoa is derived from the protein of the muscles, since the fish does not take in any food during this period. He noted that during the breeding season the muscles of the salmon atrophied to the degree that the sex glands became more active. Marshall remarks on this subject, "In the salmon, the material for the growth of the testis is supplied by the muscles undergoing atrophy."

In the human subject a similar relation has been noted. It should be observed that the adrenal glands and the testes are embryologically and histologically closely related. The excessive withdrawal of lipoids from the blood by the sex glands is at the expense of the adrenal cortex, just as the withdrawal of protein observed by Miescher is at the expense of the muscles. Excessive gonadal activity, by depriving the adrenal cortex of lipoids, leads to its atrophy.

Thus, in cases of dementia praecox, many of whom were habitual masturbators, there was noted by Mott atrophy of the adrenal cortex together with progressive atrophy of the testicles. It has also been noted that excessive withdrawal of nucleoproteins and other substances from the blood to form spermatozoa may cause diminution in the size of the thymus gland and its atrophy, which probably is the reason why this occurs after puberty. (Could the atrophy of the pineal gland, accompanying that of the thymus, not be due to a similar cause, in view of the richness of the pineal in lecithin?) Prof. Sajous shows that thymic tissue and lymphocytes are remarkably rich in nucleins, as are the heads of the spermatozoa.

Backmann found that the thymus attains its greatest size and weight just when the spermatogenesis commences, after which it starts to atrophy. Hammar noted that the thymus increases in weight from birth to puberty, but as soon as the first seminal emissions occur, with the onset of puberty, it commences to retrogress and lose weight. These facts indicate that the sexual changes of puberty, instead of being the effect of thymus atrophy at this time, are the cause.

Ostwald states that the spermatozoon contains an oxidizing ferment which acts on the ovum during fertilization and initiates its development. Loeb considers this oxidizing ferment to be lysine, whose action on the cell wall of the ovum starts embryonic growth, which can occur without fusion of cell nuclei.

The proteins of the brain cell and those of the head of the spermatozoon are very similar. Both contain abundant amounts of nucleic acid, and the head of the spermatozoa, like the Nissl substance [Wikipedia] of the brain cell, is very rich in nucleoproteins. Both the spermatozoon and the cortical brain cell are remarkably similar in their general formation. It is significant that the spermatozoon contains more phosphorus than any other cell of the body except the brain cells; and since with each ejaculation 226 million spermatozoa are given off, it is clear that in this way a considerable amount of phosphorus is lost, in addition to the phosphatic constituents of the semen.

top of page


C. Chemistry of the Brain

Modern knowledge of brain is comparatively recent and goes back to 1910 when Thudischem published "Die Chemische Konstitution des Gehirns des Menschen und de Thiere" (Chemical Composition of Human and Animal Brains). It was early realized that the most striking difference between the chemistry of the brain and that of the rest of the body is the large quantities of lipoids it contains, especially lecithin. Nerve and brain tissue are fatty substances; approximately half of this fat is cholesterin and approximately half consists of lipoids, half of which is lecithin.

No tissues in the body contain such a large quantity of fatty, alcohol-soluble substances (i.e., lipoids) as the brain, with the exception of fat tissue itself. The lipoids of the brain, however, are almost entirely free from neutral fat. [Wikipedia] These lipoids contain large amounts of phosphorus. These phospholipins have a very important function in the brain and increase in quantity with its development. The most important of them is lecithin.

The growth of the brain in infancy has been found to be proportional to the lecithin content of the milk. Human milk, intended to nourish a more rapidly growing brain, therefore contains more lecithin than animal milk. Brain lipoids are of two kinds. Some, like lecithin, are found in other organs, while others, like cephalin, phrenosin and keratin, are found only in the brain. The white matter of the brain contains twice as much cholesterin as the gray matter; the latter, on the other hand, contains twice as much lecithin and three times as much cephalin. This explains the reasons for [Jean Louis] Lassaigne's [Wikipedia] observation that in insane subjects the amount of fat and lecithin in the brain decreases in enormous proportions.

Students of the physiological chemistry of the central nervous system emphasize the fact that in the active protoplasm of each nerve and brain cell, lecithin and cholesterin are the most prominent constituents. They are also the principal constituents of the semen, which, like the brain, is also a fatty substance. These facts clearly indicate the existence of an important biochemical relationship (through the medium of the blood) between the semen and the central nervous system: Lecithin, according to Sajous, is "a conspicuous component of the brain, nerves, yolk of egg, semen, pus, white blood corpuscles and the electrical organs of the ray."

Concerning the importance of lecithin to the nerve cells, he says: "Lecithin, therefore, becomes the functional ground-substance of the cell-body of the neuron, just as it is in the nerve. Both in the neuron and its continuation, the nerve, therefore, the vascular fibrils carry blood-plasma, which, by passing through their walls, maintains a continuous reaction, of which the phosphorus of the lecithin and the oxygen of the blood-plasma are main reagents, and chemical energy is the end-result."

According to Duval's observations, functioning nerve tissue is the seat of intense combustion accompanied by the liberation of heat; in view of Evan's deductions, this should consist chiefly in the oxidation therein of organic phosphorus compounds (i.e., lecithin).

Concerning the large amounts of phosphorus in the brain, Professor Mathews, the physiological chemist, says, "Not only do we find compounds of phosphorus in the protoplasm of the brain (and its importance was emphasized by Thudischem by the selection of the phosphatide, to indicate that the other radicals are grouped around it), but phosphorus occurs in large amounts in the nucleus and in phytin; it helps regulate cell reactions."

Among the phosphatides (phospholipins) that compose the largest part of the solids of the brain are: lecithin, cephalin, myelin, sphingomelin, amino-myelin and paramyelin. Besides the phospholipins are the glycolipins, which include phrenosin, kerasin, cerebron, homcerebrin, and cerebric acid. There are also amino-lipins, or nitrogenous fats.

The medullary sheaths surrounding the nerves are composed of glycolipins (cerebrosides), phospholipins and cholesterin. Sajous states his conviction that the myelin of the nerves is not a mere insulating material or sheath, but a phosphorus-containing substance (lecithin) which, when in contact with oxygen-laden blood, generates nerve-electricity through oxidation. The importance of sufficient lecithin to keep the myelin sheaths properly nourished is therefore apparent.

Could not the symptoms of neurasthenia, i.e., diminished generation of nerve-electricity, be due to lecithin deficiency as the result of seminal withdrawals? Lipins, including lecithin, play a role in maintaining of irritability of the nerves. Mathews believes, with Sajous, that the lecithin and lipins of the myelin sheaths have a nutritive function in relation to the nerves. Tashiro showed that nerve fibers are centers of the most active metabolism of any cells of the body, and that they are nourished by the lipoidal substances of the sheath that surrounds them, namely, the phosphatides.

It is therefore clear that phosphatides, most important of which is lecithin, are of great importance to the nutrition of the nerves, and that an abundant supply of them in the blood makes for the best nutrition of nervous tissue, while a deficiency, as is caused by excessive activity of the sex glands, leads to under-nutrition and diminished functioning of nerve and brain cells, which can lead to the appearance of neuroses and psychoses.

According to Mathews, the materials of which the medullary sheath of the nerves is composed are galactose, inosite, fatty acids, phosphoric acid, sulphuric acid, potassium, calcium and sodium besides abundant lecithin. Mathews states that in order to fulfill its nutritive function in relation to nerve cells, the myelin sheath contains a reserve of phospholipins (lecithin). The more rapid the metabolism of the nerve fiber, the larger the quantity of such nutritive substances that pass from the myelin sheath to the rest of the nerve cell.

In view of these considerations, neurasthenia should be viewed as a condition of lipoidal undernutrition of nervous tissue due to a lack of lecithin and phosphatides in the medullar sheaths. Sexual neurasthenia is obviously due to the withdrawal of these substances from the blood by the sex glands and their discharge through the semen.

According to Petrowssky, the gray and white matter of the brain have the following composition:

Parts per 100 Gray Matter, White Matter:

  • Water 81.62, 68.25
  • Fixed residuum 18.28, 31.75
  • Albumen and keratin 11.42, 8.87
  • Lecithin 3.16, 3.14
  • Cholesterin and fats 3.44, 16.64
  • Cerebrin 0.10, 3.01
  • Minerals (potassium, sodium, calcium, magnesium, iron, phosphorus, chlorine, sulfur) 0.26, 0.18

The albumens found in the brain are similar to those in the semen. Both are composed chiefly of albumen and lipoids; and both contain more cholesterol, lecithin and phosphorus than other parts of the body. The brain also contains cephalin, cerebrosides, cerebric acid, myelin, neuroplastin and lactic acid.

It is interesting to note that the cerebro-spinal fluid, like the semen, is rich in calcium, phosphorus, sodium, magnesium and chlorine, and has an alkaline reaction. The ancients note a relation between the semen and the spinal cord, and Hippocrates believed that involuntary seminal losses can cause tabes dorsalis. [5a, 5b] That they cause spinal weakness is well known.

[5a. See quote further below.]

[5. en.wikipedia.org/wiki/Tabes_dorsalis ]

That the sex glands and the brain have an intimate physiological connection with each other, which is antagonistic in the sense that greater activity of one leads to decreased activity of the other, has been stated by Havelock Ellis in the following words:

"The brain and the sexual organs are the great rivals in using up bodily energy, and there is an antagonism between brain vigor and extreme sexual vigor, even though they may sometimes appear at different periods in the same individual. In this sense, there is no paradox in the saying of Roman Correa that potency is impotency and impotency potency, for a high degree of energy, whether in athletics or in intellect, is unfavorable to the display of energy in other directions.... The masters of all the more intensely emotional arts have frequently cultivated a high degree of chastity. This is notably the case as regards music. One thinks of Mozart, of Beethoven, of Shubert. At the age of twenty-five, when he had already produced much fine work, Mozart wrote in a letter that he had never touched a woman."

Dr. Ryan expressed a similar thought when he wrote:

Isaac Newton Isaac Newton celibacy quote
"Bacon observed that no one of great genius in antiquity had been addicts to women; and he stated that among the moderns the illustrious Newton had never enjoyed sexual intercourse. This fact confirms the remark made by Aretaeus, and since verified by physiologists, that continence, or the reabsorption of the semen into the bodily economy, impresses the whole organism with an extreme tension and vigor, exciting the brain and exalting the faculty of thought."

top of page


D. Neurasthenia as a Lecithin Deficiency Disease

That neurasthenia is the result of lecithin starvation of nerve cells, due to sexual withdrawals of lecithin, is indicated by Dr. Bernard Talmey, eminent American sexologist, in a paper entitled, "Sexual Problems of Today, with a Case of Hysterical Insanity Caused by Excessive Masturbation," [6] in which he writes:

[6. Google Books ]

"The percentage of neurasthenia of sexual origin is so large that it is always well in the presence of this anomaly to look for sex as a fruitful cause. There is an intimate relation between the genitals and the head... The two perversions, masturbation and onanism (congressus interruptus of Onan) are oftener the cause of the general breakdown than excesses in normal sex life. Of these two, masturbation is the more dangerous because its practice usually begins in the immature child, and if indulged in to excess, leads to fatigue and exhaustion of the central nervous system."

On the same subject, writing on the causes of nervous debility, Dr. Frederick Humphrey [7] says that it:

[7. (816-1900) en.wikipedia.org/wiki/Frederick_K._Humphreys ]

"is almost invariably the result of some drain upon the vital forces, such as excesses of various kinds: excessive morbid indulgence, involuntary losses of vital fluids, too long and too constant excitement of the sexual system, and more especially when such indulgences are allowed in connection with mental and physical overwork. Nervous debility is often brought on in young persons by the habit of masturbation, which, if persisted in from time to time, is inevitably followed by consequences immediate and remote, and are of the most formidable character. It is safe to say that multitudes are every year brought into the most deplorable condition of nervous debility from these very pernicious practices alone."

Dr. El Lernanto writes: "In the male sex, nerve-exhaustion manifests itself by spermatorrhea or involuntary loss of semen, due to sexual gratification and other gratifications of the passion in and out of the martial relation, both in adults and youths."

In an article, "Sexual Neurasthenia and the Prostate" (Medical Record, Feb., 1912), Prof. F. G. Lydston presents evidence to prove that neurasthenia has its roots in prostatic dysfunction caused by sexual indulgence, which results in depletion and derangement of the prostatic hormone. He writes:

"There is almost always some functional derangement of the sexual apparatus behind which lies a varying degree of organic disorder (in neurasthenia). My experience leads me to the conclusion that neurasthenia in the males is associated with prostatic hyperemia and hyperesthesis of the prostatic urethra more than with any other condition.... Practically all of these subjects have been masturbators, many of them have indulged in sexual excesses, and not a few have had gonorrhea....

"I doubt if it is possible for one to indulge in either masturbation or sexual excess for any length of time without producing disturbance of prostatic circulation and innervation... Practically every masturbator who has practiced the habit for any length of time may be considered as having a more or less tender and swollen prostate. My experience goes to show that this condition underlies many of the cases of nocturnal emissions with which we meet."

Professor Casper considers masturbation and excessive coitus as the true causes of neurasthenia, writing, "In general it may be stated that masturbation is more prone to produce cerebral neurasthenia, while excessive sexual intercourse tends rather to cause the spinal form."

Dr. Allen, in a paper, "Etiology and Pathology of Impotence," considers masturbation and sexual excess as the causes of impotence, producing as they do inflammation and congestion of the prostatic urethra, a condition predisposing to nocturnal emissions and spermatorrhea, which precipitate loss of functional activity of the testicles, which is the essential feature of impotence. According to Prof. Lydston, nocturnal emissions always denote a condition of inflammation and congestion of the prostatic urethra, which can pass into a more serious form, if not cured, as diurnal emissions and spermatorrhea, the underlying causes of which are masturbation and sexual excess.

top of page


E. The Prostate Secretions and Neurasthenia

Physiologists in the past knew little concerning the function of the prostate gland. Steinach found that its secretion facilitates fertilization, since spermatozoa are impotent without it. As time went on, the idea that this gland is a true endocrine headway; and in addition to prolonging the life of the spermatozoa, observers were agreed that "the secretion of the accessory glands (including the prostate) may perform other important functions."

That resorbed prostatic secretions have a nutritive effect on the spinal cord is indicated by the experiments of Engles who found that the injection of an extract of the lumbar cord of a buck resulted in the cure of impotence and catarrh of the prostate. Chemically and physiologically, there appears to be a close relationship between the spinal cord and prostate glands. The removal of the prostate through prostatectomy, which leaves the patient physically, nervously and mentally incapacitated, has also shown that this gland has an important hitherto unsuspected physiological function. Such observations have led [C.I.] Macht [8] to ask, "Can such an impairment in mental efficiency be attributed to the extirpation of the prostate gland and the consequent deprivation of an internal secretion elaborated by it?"

[8. See "Historical Contribution: 1921, Macht & Bloom": bradyurology.blogspot.com ]

Macht attempted to answer this question by experiment. He found that when young rats are prostatectomized they show a distinct weakness of the hind legs and are slower to learn that non-prostatectomized animals. That this was not due to the operative technique itself but to the fact that when the prostate is removed there is an absence of its specific internal secretion, is indicated by the fact that when the testes were removed there was no such muscular incoordination and weakness as followed the removement of the prostate. The prostatectomized rats improved when fed on gland substance. These observations indicate that the prostate gland produces a hormone essential for the well-being of the spinal cord and that deprivation of this hormone injures the cord and results in disturbed functioning.

In an article, "The Prostate Gland as an Endocrine Organ," [9] Macht writes:

[9. Search on the title: archive.org ]

"The experiments on the tadpoles, revealing a distinct influence of prostate feeding on the growth and development of the animals, and the data so far in hand concerning prostate feeding in higher animals, speak very strongly in favor of an endocrine function of the prostate gland. These experiments, together with those of Serralach and Pares, would seem in the author's opinion, to be the chief evidences in favor of such a function... Feeding with prostatic substance exerts an influence upon the growth and differentiation of tadpoles. This, of course, would speak in favor of an internal secretion of the prostate gland."

Macht and Bloom noted an atrophy of the testes in rats when the prostate was removed.

According to Hunt the prostate functions in connection with the testis in the production of sex hormones. In an article, "New Theory of the Function of the Prostate" (Endocrinology, Nov. 1925), [10] Dr. Hunt presents evidence to prove that the testicles are not alone responsible for the production of sex hormones. He cites a case of diminished sex function in a man with a hypertrophied prostate, removal of the prostate leading to complete cessation of sex function. A ram's testicle was then successfully transplanted. Though this resulted in an increase in nervous vitality, no sexual change occurred. However when a bull's prostate was implanted, sex desire and function were re-established.

[10. Search on "new theory": archive.org ]

Such observations led Dr. Hunt to conclude that "the prostate is definitely responsible, with the testicle, both for sex function and sex desire.... Hypertrophy of the prostate occurs too often with the onset of impotence or diminished function to be attributed to mere coincidence."

Hunt's view is further supported by Dr. W. Belfield of Chicago who claims to have clinical evidence to prove that the testes and ovaries are not the sole seats of sex hormone production, and that other glands take part in their formation. [11] He has come across cases in which there was complete development of sexual traits though the sex glands were absent, nor were there signs of castration. In other cases the individual was sexually normal though he possessed glands of the opposite sex. Belfield therefore concludes that there is "a force independent of the gonads which enters into the determination of the sex features."

[11. Possible abstract: jamanetwork.com ]

Blair Bell holds a similar view, based on the study of the sex glands of hermaphrodites. [12] He claims that all of the endocrine glands, and not exclusively the sex glands, enter into the determination of sexual traits.

[12. See "So-called True Hermaphroditism"; 1915. (20 page pdf) journals.sagepub.com ]

It appears that the internal secretion of the prostate gland accelerates growth and metamorphosis by its stimulating influence on the thyroid and pituitary gland, which Macht believes is the reason for the increased growth of tadpoles when fed on prostate substance.

Indicating the importance of the prostatic secretion (which is present in the semen) to the nervous system, Prof. Lipschutz writes: "It is said that prostatectomy involves an even [more] severe operative interference than castration, especially in young individuals." Clear evidence of the importance of the prostate secretion to the body is afforded by the study of its loss as occurs in cases of spermatorrhea, a disease characterized by the involuntary emission of prostatic and other seminal secretions unaccompanied by any erotic sensation – a condition closely allied to prostatitis. The loss of lecithin, cholesterin, phosphates, etc. thus occasioned exercises its most immediate and profound effect on the spinal cord and entire central nervous system.

Spermatorrhea (literally "a flow of semen") was known to Hippocrates, who called the disease tabes dorsalis. [note above] He writes:



"Tabes dorsalis proceeds from the spinal cord. It is frequently met with among newly married people and libertines. There is no fever, the appetite is preserved, but the body falls away. If you interrogate the patients, they will tell you that they feel as if ants were crawling down the spine. In making water or going to stool, they pass much semen. If they have connection, the congress is fruitless. They lose semen in bed, whether they are troubled with lascivious dreams or not; they lose it on horseback or in walking. To epitomize: they find their breathing becomes difficult, they fall into a state of feebleness, and suffer from weight in the head and ringing in the ears. If in this condition they become affected with a strong fever, they die with cold extremities."

For the cure of this condition, Hippocrates advised sex abstinence and avoidance of alcohol. Celsus advised in addition an avoidance of alcohol [and] a special raw vegetable diet. Aretaeus advised continence and cold baths. Languius advises intestinal purification through proper diet as the basic factor in the cure of this condition.

Celsus believed that consumption may be caused by involuntary seminal losses. Satorius thought that spermatorrhea predisposes to calculus and loss of sight. Saint Marie, who was the first to emphasize the fact that the discharges of spermatorrhea consist of mucous secretions from the urethra and prostate gland, rather than of testicular fluid, observed that such discharges lead to affections of the spinal marrow. He writes:

"I have discovered that a great many cases of hypochondria, of slow nervous fevers, or consumption, were kept up by this kind of gonorrhea."

Wichman, in 1772, noticed that spermatorrhea was followed by consumption and hypochondria. He believed that masturbation and excessive sexual intercourse were the predisposing, and that constipation (leading to compression of the seminal vesicles while straining at stool), was an exciting cause. He writes:

"All the patients observed by me were from twenty-five to forty years old. All were addicted to the pleasures of love, or to onanism.... When you see a man extremely thin, pale, stupid, enervated, complaining of great debility, especially in the thighs and loins, lazy in his actions, and with sunken eyes, you have reason suspect this cause."

Swediaur observed that involuntary discharge of prostatic secretion were followed by general debility, emaciation and even death. Cullerier attributed these losses to the irritation produced by hardened feces in the colon. The authority, [English physician William] Acton [13] wrote:

[13. en.wikipedia.org/wiki/William_Acton_(doctor) ]

"I am convinced that many of the most obstinate complaints which the medical man meets with arise from the loss of semen. The condition of ailment which we have characterized as spermatorrhea, then, as we shall use the word, is a state of enervation produced, at least permanently, by the loss of semen."

Our modern knowledge of spermatorrhea dates back to [Claude François] Lallemand, [14a, 14b] who made the most careful study of this disease. He traces it to an inflammation, congestion and hypersecretion of the mucous membranes of the urethra, primarily initiated by frequent sexual orgasms and intensified by the irritation of toxic blood resulting from wrong diet and autointoxication. Alcohol, coffee, tea and spices, by irritating the genital mucous membranes, he believes to contribute to this condition. The chief causes, he says, are "sexual excess and masturbation, which act principally by provoking inflammation or irritation of the ducts, and prolonged erections excited by erotic ideas or lascivious publications."

[14a. en.wikipedia.org/wiki/Claude_François_Lallemand ]

[14b. The contemporary, government-sponsored view in 2005 is that by pointing out the negative effect of masturbation, Lallemand and Acton were "Pathologizing Male Sexuality"; to the contrary, in their view the act is to be encouraged ( nlm.nih.gov ). Also, that criticism of masturbation is racist and homophobic (search Google on those terms, and on "history of circumcision"). ]

Professor Batholow of the Medical College of Ohio, in his book on spermatorrhea, [15] considers masturbation and sexual excess as the chief causes. He then goes on to show that the frequently repeated sexual orgasm causes a condition of inflammation of the urethra, manifesting first as nocturnal emissions, and when more serious merging imperceptibly into true spermatorrhea, in which the act of emission occurs without erection, pleasure or particular sensation, the semen gradually losing its color, odor and spermatozoa gradually coming to resemble mucous or prostatic secretion, often being lost with the urine.

[15. Google Books (1871, 3rd edition) ]

Professor Bartholow believes that spermatorrhea may cause degeneration of the cells of the gray matter of the spinal cord, which indicates a relationship to tabes dorsalis or locomotor ataxia, which has been repeatedly observed by physicians in both ancient and modern times. This is understandable in view of the close similarity in chemical composition between the semen and the spinal cord, for which reason excessive losses of semen can deprive the myelin of spinal tissue of lecithin, which is so necessary for the nutrition of nerve cells.

Deslandes, Tissot and others have described various spinal affections, including paralysis and poliomyelitis, caused by masturbation.

On this subject, Prof. F. G. Lydston,* professor of diseases of the genito-urinary organs at the Medical School of the University of Illinois, writes:
[* actually G. Frank Lydston, MD, accouring to their directory (pdf) of 1898.]

"As might be inferred from the fact that sexual excess and masturbation bear an important relation to locomotor ataxia, spermatorrhea is associated with that form of nervous disease more often than any other. The evil habit of masturbation, if continued, produces great irritation of the procreative organs – especially of the seat of sexual sensibility in the prostatic urethra... Erotic dreams result, with losses of seminal secretion. This may merge into true spermatorrhea, the morbid condition finally becoming so pronounced that with little or no provocation, losses occur in the daytime.

"Spermatorrhea, in the majority of instances is the result of sexual excess or masturbation, and, moreover, the effects of the venereal organs being expended upon the nervous system, it is rational to infer that the disease when fully developed essentially is a neurosis."

Dr. [J.W.] Howe, [16] professor of clinical surgery at Bellevue Hospital Medical School, believes that sclerosis of nerve fibers of the cerebellum may be caused by involuntary emissions of semen by night or day. He also thinks that "diseases of the brain and cord are ushered in and accompanied by frequent ejaculations of seminal fluid. Many of the cases are accompanied by impotence, others develop satyriasis and priapism."

[16. Author of Excessive Venery, Masturbation, and Continence, 1887. Of course, he is roundly ridiculed today by the "experts".]

He adds:

"In one case of partial cerebral sclerosis which involved a small portion of the cerebellum, the patient suffered from frequent emissions before any symptoms of cerebral trouble manifested themselves. Coincident with manifestations of the sclerosis, the pollutions were increased in frequency, and as the disease progressed, were of daily and nightly occurrence.

"Progressive locomotor ataxia [Wikipedia] was at one time supposed to arise from inordinate sexual congress and onanism.... A majority of patients suffering from locomotor ataxia have spermatorrhea of troublesome nature. In the later stages of the disease there is complete loss of virile power. In the cases which are preceded by spermatorrhea, the disease is of a more serious nature, and is more apt to run a rapid course and reach a fatal termination.

"Other diseases of the spinal cord, such as white softening, tumors and injuries, are all accompanied by some disarrangement of the genital functions. In some instances, they are characterized by frequent ejaculations and loss of virility; in others priapism and aspermitism are present. In injuries which produce a certain amount of irritation and inflammation, the latter conditions are more likely to be present, while in anemic conditions, or chronic softening, seminal emissions and impotence are usual. Chronic or white softening of the spinal cord may arise as a result of masturbation and sexual excess."

Dr. Guy, in his "Diseases of the Urinary and Generative Systems," says that spermatorrhea is associated with pains in the back and with wasting away of the spinal marrow. Dr. Milton, in his "Spermatorrhea", speaking of the effects of this disease, says: "The more serious results are amaurotic [partial loss of sight] and epileptiform symptoms, epilepsy, phthisis, insanity, paralysis and death." Holmes, in his "System of Surgery," mentions a relationship between spermatorrhea and epileptiform symptoms. Dr. Russell wrote an article in the "Provincial Medical and Surgical Journal" on "The Connection Between Spermatorrhea and Epilepsy."

Dr.Watson, writing on the relation between spermatorrhea and nervous and mental diseases, writes:

"I have not observed such results myself, with the exception of sanity, of which I have seen several instances; but, there seems no doubt about the facts themselves. Epilepsy seems clearly to have ensued in several cases of excessive masturbation. McDougall saw three instances of this; and Sir Thomas Watson speaks of it as a very frequent result.

"Dr. Durkee mentions epileptiform convulsions and idiocy as results of masturbation; and Dr. Lisle, medical inspector of one of the French lunatic asylums, states that spermatorrhea is a frequent cause of insanity, that this form of derangement is easily recognized, and that all treatment, directed solely against the brain is powerless here; whereas the affection is instantly and rapidly cured if the discharges be arrested, unless indeed the case has gone on to paralysis and dementia."

Formerly spermatorrhea and gonorrhea were identified as the same disease, [17] and also gonorrhea and syphilis. Spermatorrhea appears to represent a catarrhal inflammation of the genital mucous membranes, accomplished by a mucous discharge. Ordinary nocturnal emissions constitute a primary manifestation of such a catarrhal inflammation, while true spermatorrhea represents a more advanced form, being the male homologue of leucorrhea in the female.

[17. Wish he would have said this earlier.]

When the inflammation of the genital mucosa advances from a catarrhal [inflamed] to a purulent stage, [discharging pus] the discharge assumes a purulent character; and in place of whitish or colorless mucus, there occurs the characteristic yellowish purulent discharges of gonorrhea accompanied by the gonococcus.

From the above considerations it is clear that the pathological symptoms of gonorrhea, especially those affecting the nervous system, must have a relation to the adverse effects on nervous tissue of the withdrawal of lecithin and other constituents of the seminal secretion produced by previous sexual orgasms and the urethral inflammation and involuntary discharges they produce.

That gonorrhea is not entirely due to germ infection, but represents a more advanced state of inflammation of the genital mucosa than spermatorrhea, is indicated by cases of innocent gonorrhea resulting from sexual intercourse during menstruation by married couples both free from the disease, and as the result of masturbation in young girls. [18] It is clear that the neurological symptoms of gonorrhea, like those of spermatorrhea, are produced, if not exaggerated, to a great extent by the loss of lecithin, through the seminal discharges which invariably precede this disease.

[18. Have to call b.s. on that one.]

As the inflammation of the genital mucosa advances from a purulent (gonorrheal) state of inflammation to a fibroid and atrophic one, we have the characteristic fibroid growths and cancers of the uterus in the female, while in the male, the cancer-like growths on the sexual organs characteristic of the beginnings of syphilis appear.

That the demineralization and dealkalization of the blood through previous seminal discharges prepare the soil for such cancerous developments, there can be no doubt, while a resulting condition of acid intoxication can prepare the biochemical conditions of the organism for the skin pathologies of secondary syphilis, which bear a resemblance to those that accompany the seminal discharges resulting from the masturbation and involuntary emissions of puberty.

As for the more serious symptoms of tertiary syphilis affecting the spinal cord and the brain, it is clear, from the above description of the effects of the lecithin withdrawals of spermatorrhea on these organs, that previous sexual excesses have an important relation to their production, as well as the mercury and arsenic compounds used in the initial stages of the disease, since before they were used in the treatment of syphilis, the specific tertiary form of the disease was comparatively unknown, and did not appear in its present virulency until after these powerful nerve poisons were introduced into medical practice. Prior to this time, syphilis was considered as a more serious form of gonorrhea and both conditions were identified under the name of "venereal disease."

From the foregoing, it is clear that there is an important internal physiological relation between the secretions of the sex glands and the central nervous system, that the loss of these secretions, voluntarily or involuntarily, exercises a detrimental effect on the nutrition and vitality of the nerves and brain, while, on the other hand, the conservation of these secretions has a vitalizing effect on the nervous system, a regenerating effect on the endocrine glands and a rejuvenating effect on the organism as a whole.


[ end ]

top of page